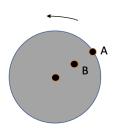
Linear Motion	Rotational Motion	Relation between them:
x (position, m):	θ (angle, rad)	$x = r\theta$
v (velocity, m/s): $v = \frac{\Delta x}{\Delta t}$,	ω (angular velocity, rad/s): $\omega = \frac{\Delta\theta}{\Delta t}$	$v = r\omega$
a (acceleration, m/s^2): $a = \frac{\Delta v}{\Delta t}$	α (angular acceleration, rad/s^2): $\alpha = \frac{\Delta\omega}{\Delta t}$	$a = r\alpha$
Linear Kinematics	Rotational Kinematics	
$x = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$	
$v^2 = v_0^2 + 2a(x - x_0)$	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	

Signs: $\omega = +$ for counterclockwise, $\omega = -$ for clockwise


$\alpha = +$ for counterclockwise and speeding up,	$\alpha = -$ for counterclockwise and slowing down,
$\alpha = -$ for clockwise and speeding up,	$\alpha = +$ for clockwise and slowing down

- 1. A wheel accelerates from rest. After 8 seconds the wheel made 3 revolutions.
 - (a) What is the angular acceleration of the wheel in rad/s^2 ?
 - (b) What is the angular velocity in rad/s of the wheel after 8s?
- 2. A record on a record player starts from rest and begins rotating. The motor can accelerate the record at a rate of $1rad/s^2$ and the manual says the record must be spinning at 33rev/min before the music will play. How long will you have to wait until you hear the music?

How many revolutions will the record have made at that time?

- 3. A car tire accelerates from rest to 30m/s in a time of 6s. The radius of each tire is 0.2m. (Assume the tires rotate counterclockwise, so that the angular speed is positive.)
 - (a) What is the acceleration of the car?
 - (b) What is the angular acceleration of each tire?
 - (c) Now the driver slams on the brake and the car decelerates down to 20m/s in a time of 1s. What is the angular acceleration of each tire? (Is it positive or negative?)

4. Two points are on a disk rotating with a constant angular acceleration. The disk is speeding up. Point A is on the rim and Point B is halfway to the center of the disk. A:, B:, C: Same

- (a) Which point moves through a greater distance after a certain amount of time: x?
- (b) Which point turns through a greater angle, θ ?
- (c) Which point has the greater linear (tangential) speed, v?
- (d) Which point has the greater angular speed, ω ?
- (e) Which point has the greater linear (tangential) acceleration, a?
- (f) Which point has the greater angular acceleration, α ?
- (g) Which point has the greater centripetal acceleration, $a_c = \omega^2 r$?
- 5. Now consider the case of a penny-farthing bike. A:, B:, C: Same

- (a) Which wheel moves through a greater distance after a certain amount of time: x?
- (b) Which wheel turns through a greater angle, θ ?
- (c) Which wheel has the greater linear (tangential) speed, v?
- (d) Which wheel has the greater angular speed, ω ?
- (e) Which wheel has the greater linear (tangential) acceleration, a?
- (f) Which wheel has the greater angular acceleration, α ?
- (g) Which wheel has the greater centripetal acceleration, $a_c = \frac{v^2}{r}$?